муниципальное бюджетное общеобразовательное учреждение города Ульяновска «Средняя школа № 52» имени Героя Российской Федерации Шишкова А.В.

Рассмотрено на заседании ШМО учителей математики, физики и информатики Протокол № 1 от «28» августа 2023 г. Руководитель ШМО И.А.Здобнякова

Согласовано
Заместитель директора
по УВР
В.А. Мисюков
«28» августа 2023 г.

Утверждено
Приказ № 323
от «30» августа 2023
Директор МБОУ СШ № 52 имени
Тероя Российской Федерации
Шишкова А.В.

Рабочая программа учебного предмета «Физика. Базовый уровень» для 11 класса среднего общего образования на 2023-2024 учебный год

Ульяновск, 2023

Рабочая программа по физике для 11 классов базовый уровень составлена на основе следующих *нормативных документов*:

- 1. Закон «об образовании в Российской Федерации» (от 29.12.2012 г. №273-Ф3) (ред. от 04.08.2023);
- 2. Федеральный государственный образовательный стандарт среднего общего образования (утвержден приказом Министерства образования и науки Российской Федерации от 06.10.2009г. № 413 (редакция от 12.08.2022г № 732);
- 3. Федеральная образовательная программа среднего общего образования (Утверждена приказом Минпросвещения России от 18.05.2023 под № 371;
- 3. Федеральные рабочие программы воспитания. Приказ Министерства просвещения Российской Федерации от 18.05.2023 № 371 «Об утверждении федеральной образовательной программы среднего общего образования»
- 4. «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи». СП 2.4.3648-20, утвержденные Постановлением Главного государственного санитарного врача Российской Федерации от 28.09.2020 №28; СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (утв. Постановлением Главного государственного санитарного врача РФ от 28.01.2021N2); 5.Основная образовательная программа среднего общего образования МБОУ СШ №5252 имени Героя Российской Федерации Шишкова А.В.;
- 7. Рабочая программа воспитания МБОУ СШ № 52 (протокол от 26.08.2022 № 1 Педагогического Совета);
- 8. Учебный план МБОУ СШ №52 имени Героя Российской Федерации Шишкова А.В.;
- 9. Учебный календарный график МБОУ СШ № 52 имени Героя Российской Федерации Шишкова А.В. на текущий учебный год;
- 10. Физика. Базовый и углубленный уровни. 10 11 классы: рабочая программа к линии УМК Н.С. Пурышевой, Н.Е. Важеевской и др.: учебно-методическое пособие / Н.С. Пурышева, Е.Э. Ратбиль М.:Дрофа, 2017;

11. Федеральный перечень учебников, рекомендованных (допущенных) к использованию в образовательной деятельности в организациях, осуществляющих образовательную деятельность.

Рабочая программа по физике в 11 классе рассчитана на 33 учебные недели.

Количество часов в неделю – 3

Количество часов на учебный год – 99

В программе отражено выполнение практической части по физике не менее:

Контрольных работ – 5 Лабораторных работ – 7

Реализация рабочей программы осуществляется с использованием учебника: Физика. Базовый и углублённый уровни. 11 класс: учебник/ Н.С. Пурышева, Н.Е. Важеевская, Д.А. Исаев, В.М. Чагурин. – М.:Дрофа, 2019.

1. Планируемые результаты освоения содержания курса.

Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования.

Личностными результатами обучения физике в среднейшколе являются:

- в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя — ориентация на достижение личного счастья, реализацию жизненных перспектив, инициативность, креативность, позитивных готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы; готовность и способность обеспечить себе и своим близким достойную жизнь самостоятельной, творческой и ответственной деятельности, к отстаиванию личного достоинства, собственного мнения, вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны, к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества; принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;
- в сфере отношений обучающихся к России как к Родине (Отечеству) способность российская идентичность, К осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите; уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн); формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой идентичности и главным фактором национального самоопределения; воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации;
- в сфере отношений обучающихся к закону, государству и к гражданскому обществу гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни; признание

неотчуждаемости основных прав И свобод человека, принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность; мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире; интериоризация ценностей демократии социальной солидарности, готовность к договорному регулированию отношений в организации; готовность или социальной обучающихся конструктивному участию в принятии решений, затрагивающих права и различных TOM формах интересы, числе В общественной самоуправления, общественно самоорганизации, деятельности; приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения национальному достоинству людей, их чувствам, религиозным готовность обучающихся противостоять убеждениям; идеологии экстремизма, национализма, ксенофобии, коррупции, дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;

- сфере отношений обучающихся \mathcal{C} окружающими людьми нравственное сознание поведение основе И на усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения; принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению; способности сопереживанию и формированию позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь; формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия формирование дружелюбия); компетенций сотрудничества сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- в сфере отношений обучающихся к окружающему миру, к живой природе, художественной культуре мировоззрение, соответствующее современному уровню развития науки, значимость науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества; готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как

условию успешной профессиональной и общественной деятельности; экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственности за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности; эстетическое отношение к миру, готовность к эстетическому обустройству собственного быта;

- в сфере отношений обучающихся к труду, в сфере социальноэкономических отношений — уважение всех форм собственности, готовность к защите своей собственности; осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов; готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем; потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности, готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Метапредметные результаты обучения физике в средней школе представлены тремя группами универсальных учебных действий.

Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- определять несколько путей достижения поставленнойцели;
- выбирать оптимальный путь достижения цели с учетом эффективности расходования ресурсов и основываясь на соображениях этики и морали;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- оценивать последствия достижения поставленной цели в учебной деятельности, собственной жизни и жизни окружающих людей.

Познавательные универсальные учебные действия

Выпускник научится:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщенные способы решения задач;

- приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого; анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над ее решением; управлять совместной познавательной деятельностью и подчиняться).

Коммуникативные универсальные учебные действия

Выпускник научится:

- осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующими т. д.);
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- координировать и выполнять работу в условиях виртуального взаимодействия (или сочетания реального и виртуального);
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметные результаты обучения физике в средней школе

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественнонаучных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;

- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и т. д.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Электродинамика

На уровне запоминания

Называть:

- понятия: электрическое поле, проводники и диэлектрики;
- физические величины и их условные обозначения: электрический заряд, электростатического напряженность поля, диэлектрическая проницаемость, потенциал электростатического поля, разность потенциалов, или напряжение, электрическая емкость, электродвижущая сила (ЭДС), сила тока, напряжение, сопротивление проводника, удельное сопротивление проводника, внутреннее сопротивление источника тока, температурный коэффициент сопротивления, электрохимический эквивалент вещества, магнитная индукция, магнитная проницаемость среды, магнитный поток, ЭДС индукции, ЭДС самоиндукции, индуктивность, энергия магнитного поля, относительный и абсолютный показатели преломления, предельный УГОЛ полного внутреннего отражения, увеличение линзы, фокусное расстояние линзы, оптическая

- сила линзы; единицы этих величин;
- понятия: сторонние силы, ЭДС, низкотемпературная электромагнитная высокотемпературная плазма, магнитное поле, индукция, самоиндукция, электромагнитное поле, электромагнитные внутреннее отражение, мнимое изображение, полное действительное изображение, главная оптическая ось линзы, побочная оптическая ось линзы, главный фокус линзы, когерентность;
- физические приборы и устройства: электроскоп, электрометр, крутильные весы, конденсатор;
- методы изучения физических явлений: наблюдение, эксперимент, теория, выдвижение гипотез, моделирование.

Воспроизводить:

- исторические сведения о развитии учения о постоянномтоке, о магнитном поле, о свете;
- определения понятий: электрическое взаимодействие, электрические силы, элементарный электрический заряд, точечный заряд, электризация тел, проводники и диэлектрики, электростатическое поле, напряженность электростатического поля, линии напряженности электростатического поля, однородное электрическое поле, потенциал, разность потенциалов (напряжение), электрическая емкость, электрический ток, сторонние силы, ЭДС, сила тока, напряжение, сопротивление проводника, удельное сопротивление проводника, магнитное поле, вектор магнитной индукции, линии магнитной индукции, магнитная проницаемость среды, магнитный поток, электромагнитная индукция, ЭДС индукции, самоиндукция, ЭДС самоиндукции, индуктивность, вихревое электрическое поле, полное внутреннее отражение, мнимое изображение, главная оптическая ось линзы;
- законы и принципы: закон сохранения электрического заряда, закон Кулона; принцип суперпозиции сил, принцип суперпозиции полей;
- правила: правило буравчика, правило левой руки, правило Ленца;
- напряженности электростатического – формулы: поля, разности потенциалов, электрической емкости, взаимосвязи разности потенциалов и напряженности электростатического поля, электродвижущей силы, силы тока, закона Ома для участка цепи и для полной цепи, сопротивления проводника температуры, зависимости otзаконов последовательного И параллельного соединения резисторов, закона Джоуля—Ленца, работы и мощности электрического тока, закона электролиза, модуля вектора магнитной индукции, силы Ампера, силы Лоренца, магнитного потока, ЭДС индукции, ЭДС самоиндукции, индуктивности, энергии магнитного поля, для расчета заряда, силы тока, напряжения при электромагнитных колебаниях; периода электромагнитных колебаний, предельного угла полного внутреннего отражения, увеличения линзы, оптической силы линзы, тонкой линзы, условий интерференционных максимумов и минимумов;
- аналогию между электрическими и гравитационными силами;
- условия существования электрического тока.

Описывать:

- наблюдаемые электрические взаимодействия тел, электризацию тел, картины электростатических полей;
- опыты: Кулона с крутильными весами, Гальвани, Вольты, Ома, Эрстеда, Ампера, Фарадея, Герца по излучению и приему электромагнитных волн;
- опыты, доказывающие электронную природу проводимости металлов;

- применения электролиза;
- устройство: гальванического элемента и аккумулятора, электроннолучевой трубки, масс-спектрографа, МГД-генератора, электроизмерительных приборов, проекционного аппарата, фотоаппарата, микроскопа, телескопа;
- устройство и принцип работы вакуумного диода, генератора переменного тока, трансформатора;
- опыты по получению газовых разрядов: искрового, дугового, тлеющего и коронного; по наблюдению явления электро-магнитной индукции; по измерению скорости света; по наблюдению интерференции, дифракции, дисперсии, поляризации;
- условие возникновения электромагнитных волн;
- ход лучей в зеркале, призме, линзе, микроскопе и телескопе.

На уровне понимания

Приводить примеры:

- явлений, подтверждающих природу проводимости металлов, электролитов, вакуума, газов и полупроводников; магнитного взаимодействия, действия магнитного поля на движущиеся заряды, электромагнитной индукции;
- электромагнитных колебательных процессов и характеристик, их описывающих;
- интерференции, дифракции, поляризации и дисперсии в природе и технике;
- применения: теплового действия электрического тока, электролиза, газовых разрядов, полупроводниковых приборов,
- вакуумного диода; технических устройств для получения, преобразования и передачи электрической энергии, использования переменного электрического тока, оптических приборов.

Объяснять:

- физические явления: взаимодействие наэлектризованных тел, через электризация электризация тел, проводника влияние (электростатическая индукция), поляризация диэлектрика, электростатическая защита;
- модели: точечный заряд, линии напряженности электростатического поля:
- природу электрического заряда и электрического поля;
- причину отсутствия электрического поля внутри металлического проводника;
- механизм поляризации полярных и неполярных диэлектриков;
- создание и существование в цепи электрического тока;
- результаты опытов Гальвани, Вольты, Ома, Мандельштама—Папалекси, Толмена—Стюарта;
- вольт-амперные характеристики металлов, электролитов, вакуумного и полупроводникового диодов, газового разряда;
- зависимость от температуры сопротивления металлов, электролитов, вакуумного и полупроводникового диодов, газового разряда;
- явления: сверхпроводимости, интерференции и дифракции световых волн;
- принцип действия: термометра сопротивления, масс-спектрографа, МГД-генератора, электроизмерительных приборов, генератора переменного тока, трансформатора;
- принципы гальваностегии и гальванопластики;

- принцип работы: химических источников тока (гальванических элементов и аккумуляторов); электронно-лучевой трубки, газоразрядных ламп; терморезисторов, фоторезисторов иполупроводникового диода;
- вихревой характер магнитного поля, его отличие от электростатического поля;
- взаимосвязь электрического и магнитного полей;
- процесс электромагнитных колебаний в колебательномконтуре;
- зависимость периода и частоты колебаний от параметров колебательного контура;
- физические основы амплитудной модуляции, радиопередающих устройств и радиоприемников, радиолокации;
- применение формулы тонкой линзы.

Понимать:

- факт существования в природе электрических зарядов противоположных знаков, элементарного электрического заряда;
- свойство дискретности электрического заряда;
- смысл закона сохранения электрического заряда, принципа суперпозиции полей и их фундаментальный характер;
- эмпирический характер закона Кулона;
- существование границ применимости закона Кулона;
- объективность существования электрического поля;
- возможность модельной интерпретации электрического поля в виде линий напряженности.

Выводить:

- формулы: силы Лоренца из закона Ампера, ЭДС самоиндукции.

На уровне применения в типичных ситуациях Уметь:

- анализировать наблюдаемые явления и объяснять причины их возникновения;
- анализировать и объяснять наглядные картины электростатического поля;
- строить изображения линий напряженности электростатических полей; вольт-амперные характеристики металлов,
- электролитов, вакуумного и полупроводникового диодов, газового разряда;
- измерять ЭДС и внутреннее сопротивление источникатока, сопротивление резистора с помощью омметра;
- определять направление: вектора магнитной индукции, силы Ампера, силы Лоренца, индукционного тока;
- получать уравнение колебаний силы тока и напряжения в колебательном контуре из уравнения колебаний заряда;
- обобщать на эмпирическом уровне результаты наблюдаемых экспериментов и строить индуктивные выводы;
- строить дедуктивные выводы, применяя полученные знания к решению качественных задач.

Применять:

- изученные зависимости к решению вычислительных, качественных и графических задач;
- метод эквивалентных схем к расчету характеристик электрических цепей;
- полученные знания к объяснению явлений, наблюдаемых в природе и в быту.

На уровне применения в нестандартных ситуациях *Уметь*:

- проводить самостоятельные наблюдения и эксперименты, учитывая их структуру (объект наблюдения или экспериментирования, средства, возможные выводы);
- формулировать цель и гипотезу, составлять план экспериментальной работы;
- анализировать и оценивать результаты наблюдения и эксперимента;
- анализировать неизвестные ранее электрические явления и решать возникающие проблемы.

Использовать:

- методы познания: эмпирические (наблюдение и эксперимент), теоретические (анализ, обобщение, моделирование, аналогия, индукция).

Применять:

 полученные знания для объяснения неизвестных ранее явлений и процессов.

Обобщать:

 полученные при изучении темы знания, представлять их в структурированном виде, выделяя при этом эмпирический базис, основные понятия учения об электромагнитном поле, модели, основные законы и следствия.

Основы специальной теории относительности

На уровне запоминания

Называть:

- понятие: релятивистский импульс;
- границы применимости классической механики;
- методы изучения физических явлений: эксперимент, выдвижение гипотез, моделирование.

Воспроизводить:

- постулаты Эйнштейна;
- формулы релятивистского импульса, уравнения движения в СТО, взаимосвязи массы и энергии.

Описывать:

- опыт Майкельсона.

На уровне понимания

Приводить примеры:

- экспериментальных подтверждений выводов теории относительности.

Объяснять:

- зависимость релятивистского импульса от скорости движения тела;
- взаимосвязь массы и энергии;
- проявление принципа соответствия на примере классической и релятивистской механики.

Доказывать:

скорость света — предельная скорость движения.

Выводить:

- формулу полной энергии движущегося тела.

Объяснять:

- относительность для двух событий понятий «раньше» и «позже»;
- парадокс близнецов.

На уровне применения в типичных ситуациях Уметь:

 строить дедуктивные выводы, применяя полученные знания к решению качественных задач.

Применять:

изученные зависимости к решению вычислительных и качественных задач.

На уровне применения в нестандартных ситуациях Обобщать:

 полученные при изучении темы знания, представлять их в структурированном виде, выделяя основные структурные компоненты специальной теории относительности.

Квантовая физика.

Физика атома и атомного ядра

На уровне запоминания

Называть:

- понятия: фотоэффект, квант, фотон, корпускулярно-волновой дуализм; Томсона, планетарная модель Резерфорда, атома Резерфорда—Бора; спектры испускания и поглощения, спектральные закономерности, вынужденное (индуцированное) излучение; радиоактивность, естественная и искусственная радиоактивность, альфа-, бетта-, гамма-излучение, протон, нейтрон, нуклон, зарядовое число, массовое число, изотоп, ядерные силы, энергия связи ядра, дефект массы, радиоактивный распад, период полураспада, ядерные реакции, цепная ядерная реакция, критическая масса урана, поглощенная доза излучения, элементарные частицы, фундаментальные взаимодействия, античастицы;
- физические величины и их условные обозначения: ток насыщения, задерживающее напряжение, работа выхода, постоянная Планка, красная граница фотоэффекта, поглощенная доза излучения; единицы этих величин;
- модели: протонно-нейтронная модель ядра, капельнаямодель ядра;
- физические приборы и устройства: фотоэлемент, лазер, камера Вильсона, ускоритель, ядерный реактор, атомная электростанция;
- метод исследования: спектральный анализ.

Воспроизводить:

- определения понятий: фотоэффект, ток насыщения, задерживающее напряжение, работа выхода, красная граница фотоэффекта, фотон; радиоактивность, зарядовое и массовое числа, изотоп, ядерные силы, энергия связи ядра, дефект массы, радиоактивный распад, период полураспада, элементарные частицы;
- законы фотоэффекта; радиоактивного распада;
- уравнение Эйнштейна для фотоэффекта;
- формулы: энергии и импульса фотона, длины волны де Бройля, дефекта массы, энергии связи ядра;
- постулаты Бора;
- формулу для определения частоты электромагнитного излучения при переходе электрона из одного стационарного состояния в другое.

Описывать:

- опыты по вырыванию электронов из вещества под действием света;
- принцип действия установки, при помощи которой А. Г. Столетов изучал явление фотоэффекта;
- принцип действия вакуумного фотоэлемента;

- опыт Резерфорда по рассеянию альфа-частиц;
- опыт Франка и Герца;
- опыты: открытие радиоактивности, определение состава радиоактивного излучения Резерфордом, открытие протона, открытие нейтрона;
- процесс деления ядра урана;
- схему ядерного реактора.

На уровне понимания

Объяснять:

- явление фотоэффекта; радиоактивности, радиоактивногораспада;
- причину возникновения тока насыщения и задерживающего напряжения при фотоэффекте; гипотезы Планка о квантовом характере излучения;
 Эйнштейна об испускании, распространении и поглощении света отдельными квантами;
- смысл: уравнения Эйнштейна как закона сохранения энергии для процессов, происходящих при фотоэффекте;
- законы фотоэффекта с позиций квантовой теории;
- реальность существования в природе фотонов;
- принципиальное отличие фотона от других материальных частиц;
- гипотезу де Бройля о волновых свойствах частиц;
- модели атома Томсона и Резерфорда;
- противоречия планетарной модели;
- смысл постулатов Бора и модели Резерфорда—Бора;
- механизм возникновения линейчатых спектров излучения и поглощения;
- схему установки опыта Франка и Герца и получаемую с ее помощью вольтамперную зависимость;
- квантовый характер излучения при переходе электрона с одной орбиты на другую;
- механизм поглощения и излучения атомов;
- условия создания вынужденного излучения;
- природу альфа-, бета- и гамма-излучений;
- характер ядерных сил;
- короткодействующий характер ядерных сил по сравнению с электромагнитными и гравитационными силами;
- причину возникновения дефекта массы;
- различие между альфа- и бета-распадом;
- статистический, вероятностный характер радиоактивного распада;
- цепную ядерную реакцию;
- устройство и принцип действия ядерного реактора;
- назначение и принцип действия Токамака;
- классы элементарных частиц;
- фундаментальные взаимодействия, их виды и особенности;
- причину аннигиляции элементарных частиц.

Обосновывать:

- невозможность объяснения второго и третьего законов фотоэффекта с позиций волновой теории света;
- эмпирический характер законов фотоэффекта и теоретический характер уравнения Эйнштейна для фотоэффекта;
- идею корпускулярно-волнового дуализма света и частицвещества;
- роль опытов Лебедева и Вавилова как экспериментальное подтверждение

- теории фотоэффекта;
- фундаментальный характер опыта Резерфорда;
- роль опытов Франка и Герца как экспериментальное доказательство модели Резерфорда—Бора и подтверждение дискретного характера изменения внутренней энергии атома;
- эмпирический характер спектральных закономерностей;
- соответствие ядерных реакций законам сохранения электрического заряда и массового числа;
- зависимость удельной энергии связи нуклона в ядре отмассового числа;
- причину поглощения или выделения энергии при ядерных реакциях;
- смысл принципа причинности в микромире;
- факт существования в микромире античастиц.

Приводить примеры:

- практического применения лазеров;
- возможности использования радиоактивного метода;
- достоинств и недостатков ядерной энергетики;
- биологического действия радиоактивных излучений;
- экологических проблем ядерной физики.

На уровне применения в типичных ситуациях Уметь:

- анализировать наблюдаемые явления и объяснять причины их возникновения;
- определять неизвестные величины, используя: уравнение Эйнштейна для фотоэффекта, формулу взаимосвязи энергии излученного или поглощенного кванта и разности энергий атома в различных стационарных состояниях, законы взаимосвязи массы и энергии, радиоактивного распада;
- анализировать описываемые опыты и явления ядерной физики и объяснять причины их возникновения или следствия;
- сравнивать и анализировать модели строения атома.

Применять:

- формулы для расчета энергии и импульса фотона; дефекта массы, энергии связи ядра;
- полученные знания к анализу и объяснению явлений, наблюдаемых в природе и технике.

На уровне применения в нестандартных ситуациях Уметь:

- обобщать полученные знания на основе структуры физической теории;
- объяснять роль явления фотоэффекта как научного факта, явившегося основой для создания теории фотоэффекта;
- обосновывать роль гипотез Планка и Эйнштейна в создании квантовой физики;
- раскрывать теоретические следствия, доказывающие правомерность высказанных гипотез;
- показывать значение экспериментов Лебедева и Вавилова как подтверждение истинности предложенных гипотез.

Уметь оценивать результаты, полученные при решениизадач и проблем:

- при расчете энергии излученного или поглощенного фотона;
- при расчете частоты электромагнитного излучения (длины волны) атома при переходе электрона из одного стационарного состояния в другое;
- в которых используется уравнение Эйнштейна и законыфотоэффекта.

Использовать:

- понятие вынужденного излучения для объяснения принципа работы лазера и его практического применения;
- эмпирические и теоретические методы познания: наблюдение, эксперимент, анализ и синтез, обобщение, моделирование, аналогия, индукция.

Применять:

 полученные знания для объяснения неизвестных ранее явлений и процессов.

Астрофизика

На уровне запоминания

Называть:

- физические величины и их условные обозначения: расстояние до небесных тел (r), солнечная постоянная (E_{\bigcirc}) , светимость(L);
- единицы измерения расстояний: астрономическая единица, парсек, метр, световой год;
- планеты Солнечной системы;
- состав солнечной атмосферы;
- группы звезд: главной последовательности, красные гиганты, белые карлики, нейтронные звезды, черная дыра;
- типы галактик;
- спектральные классы звезд;
- квазары, активные галактики;
- источник энергии Солнца и звезд.

Воспроизводить:

- порядок расположения планет в Солнечной системе;
- определение понятий: световой год, парсек, освещенность, солнечная постоянная;
- зависимость цвета звезды от ее температуры;
- явление разбегания галактик;
- закон Хаббла;
- масштабную структуру Вселенной.

Описывать:

- явления метеора и метеорита;
- грануляцию и пятна на поверхности Солнца;
- основные типы звезд;
- спектральные классы звезд;
- конечные этапы эволюции звезд;
- вид Млечного Пути;
- расширение Вселенной;
- модель «горячей Вселенной»;
- типы галактик.

На уровне понимания

Приводить примеры:

- небесных тел, входящих в состав Вселенной, Солнечнойсистемы;
- явлений, наблюдаемых на поверхности Солнца;
- взаимосвязи основных характеристик звезд;
- различных типов галактик;
- роли фундаментальных взаимодействий в различных объектах Вселенной;
- роли фундаментальных постоянных в объяснении природы явлений в различных масштабах Вселенной.

Объяснять:

- происхождение метеоров;
- темный цвет солнечных пятен;
- высокую температуру в недрах Солнца.

Оценивать:

- температуру звезд по их цвету;
- светимость звезды по освещенности, которую она создает на Земле, и расстоянию до нее;
- массу Галактики по скорости движения Солнца вокруг еецентра.

На уровне применения в типичных ситуациях

Уметь:

- описывать: основные типы небесных тел и явлений воВселенной, основные объекты Солнечной системы, Млечного Пути и Галактики, диаграмму «спектральный класс светимость», основные этапы эволюции Солнца, основные отличия планет-гигантов от планет земной группы;
- обосновывать модель «горячей Вселенной».

Применять:

- уравнения термоядерных реакций для объяснения условий в центре Солнца и звезд;
- закон Хаббла для определения расстояний до галактик по их скорости удаления.

Оценивать:

- возраст звездного скопления по диаграмме «спектральный класс светимость»;
- возраст и радиус Вселенной по закону Хаббла.

На уровне применения в нестандартных ситуациях Обобщать:

 знания о физических различиях планет, звезд и галактик, о проявлении фундаментальных взаимодействий в различных масштабах Вселенной, о месте человека во Вселенной, о роли астрономии в современной естественно-научной картинемира.

Сравнивать:

- размеры небесных тел;
- температуры звезд разного цвета;
- этапы эволюции звезд разной массы.

Применять:

 полученные знания для объяснения неизвестных ранее небесных явлений и процессов.

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования: знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Одним из путей повышения мотивации и эффективности учебной деятельности в основной школе является включение учащихся в *учебно-исследовательскую и проектную деятельность*, которая имеет следующие особенности:

1) цели и задачи этих видов деятельности учащихся определяются как их личностными мотивами, так и социальными. Это означает, что такая

деятельность должна быть направлена не только на повышение компетентности подростков в предметной области определенных учебных дисциплин, не только на развитие их способностей, но и на создание продукта, имеющего значимость для других;

- 2) учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей и т. д. Строя различного рода отношения в ходе целенаправленной, поисковой, творческой и продуктивной деятельности, подростки овладевают нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества в коллективе;
- 3) организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности. В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному виду деятельности.
- В результате учебно-исследовательской и проектной деятельности обучающиеся получат представление:
- о философских и методологических основаниях научной деятельности и научных методах, применяемых в исследовательской и проектной деятельности;
- о таких понятиях, как концепция, научная гипотеза, метод, эксперимент, надежность гипотезы, модель, метод сбора и метод анализа данных;
- о том, чем отличаются исследования в гуманитарных областях от исследований в естественных науках;
- об истории науки;
- о новейших разработках в области науки и технологий;
- о правилах и законах, регулирующих отношения в научной, изобретательской и исследовательских областях деятельности (патентное право, защита авторского права и т. п.);
- о деятельности организаций, сообществ и структур, заинтересованных в результатах исследований и предоставляющих ресурсы для проведения исследований и реализации проектов (фонды, государственные структуры, краудфандинговые структуры и т. п.).

Выпускник сможет:

- решать задачи, находящиеся на стыке нескольких учебных дисциплин (межпредметные задачи);
- использовать основной алгоритм исследования при решении своих учебнопознавательных задач;
- использовать основные принципы проектной деятельности при решении своих учебно-познавательных задач и задач, возникающих в культурной и социальной жизни;
- использовать элементы математического моделирования при решении исследовательских задач;
- использовать элементы математического анализа для интерпретации результатов, полученных в ходе учебно-исследовательской работы.
- С точки зрения формирования универсальных учебных действий, в ходе освоения принципов учебно-исследовательской проектной деятельности выпускник научится:
- формулировать научную гипотезу, ставить цель в рамках исследования и проектирования, исходя из культурной нормы и сообразуясь с представлениями об общем благе;

- восстанавливать контексты и пути развития того или иного вида научной деятельности, определяя место своего исследования или проекта в общем культурном пространстве;
- отслеживать и принимать во внимание тренды и тенденции развития различных видов деятельности, в том числе научных, учитывать их при постановке собственных целей;
- оценивать ресурсы, в том числе и нематериальные, такие, как время, необходимые для достижения поставленной цели;
- находить различные источники материальных и нематериальных ресурсов, предоставляющих средства для проведения исследований и реализации проектов в различных областях деятельности человека;
- вступать в коммуникацию с держателями различных типов ресурсов, точно и объективно презентуя свой проект или возможные результаты исследования, с целью обеспечения продуктивного взаимовыгодного сотрудничества;
- самостоятельно и совместно с другими авторами разрабатывать систему параметров и критериев оценки эффективности и продуктивности реализации проекта или исследования на каждом этапе реализации и по завершении работы;
- адекватно оценивать риски реализации проекта и проведения исследования и предусматривать пути минимизации этих рисков;
- адекватно оценивать последствия реализации своего проекта (изменения, которые он повлечет в жизни других людей, сообществ);
- адекватно оценивать дальнейшее развитие своего проекта или исследования, видеть возможные варианты применения результатов.

2. Основное содержание курса

Электродинамика (54ч)

Исторические предпосылки учения о постоянном электрическом существования электрического Электродвижущая тока. Стаиионарное электрическое поле. Электрический ток В Сверхпроводимость. Связь силы тока с зарядом электрона. Проводимость различных сред. Закон Ома для полной цепи. Электрические цепи с последовательным и параллельным соединением проводников. Применение законов постоянного тока. Термопара. Применение электропроводности жидкости. Применение вакуумных приборов. Применение газовых разрядов. Применение полупроводников.

Магнитное поле. Вектор магнитной индукции. Линии магнитной индукции. Магнитное поле тока. Действие магнитного поля на проводник с током. Действие магнитного поля на движущиеся заряженные частицы. Сила Ампера и сила Лоренца. Принцип действия электроизмерительных приборов. Магнитные свойства вещества.

Явление электромагнитной индукции. Магнитный поток. ЭДС индукции. Закон электромагнитной индукции. Правило Ленца. Вихревое электрическое поле. *Индукционный ток в проводниках, движущихся в магнитном поле*. Самоиндукция. Индуктивность. Энергия электромагнитного поля.

Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Период электромагнитных колебаний. Вынужденные электромагнитные колебания. Переменный электрический ток. Резистор, катушка индуктивности и конденсатор в цепи переменного тока. Генератор переменного тока. Трансформатор.

Электромагнитное поле. Гипотеза Максвелла. Излучение и прием электромагнитных волн. Открытый колебательный контур. Скорость

электромагнитных волн. Развитие средств связи.

Электромагнитные волны. Электромагнитные волны разных диапазонов и их практическое применение.

История развития учения о световых явлениях. Корпускулярно-волновой дуализм свойств света. Электромагнитная природа света. Понятия и законы геометрической оптики. Законы распространения света. Ход лучей в зеркалах, призмах и линзах. Формула тонкой линзы. Оптические приборы. Волновые свойства света: интерференция, дифракция, дисперсия, поляризация. Скорость света и ее экспериментальное определение.

Основы специальной теории относительности

Представления классической физики о пространстве и времени. Электродинамика и принцип относительности. Постулаты специальной теории относительности. *Проблема одновременности*. *Относительность длины отрезков и промежутков времени*. Элементы релятивистской динамики. Взаимосвязь массы и энергии. Энергия покоя.

Квантовая физика (25ч)

Физика атома и атомного ядра

Гипотеза Планка о квантах. Фотоэлектрический эффект. Законы фотоэффекта. Фотон. Уравнение фотоэффекта. Фотоэлементы. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Давление света. Соотношение неопределенностей Гейзенберга.

Опыты Резерфорда. Строение атома. Квантовые постулаты Бора. Спектры испускания и поглощения. Лазеры.

Радиоактивность. Состав и строение атомного ядра. Протонно-нейтронная модель ядра. Ядерные силы. Энергия связи ядер. Дефект массы.

Радиоактивные превращения. Период полураспада. Закон радиоактивного распада. Ядерные реакции. Энергетический выход ядерных реакций.

Деление ядер урана. Цепная реакция. Ядерный реактор. Ядерная энергетика. Энергия синтеза атомных ядер. Биологическое действие радиоактивных излучений. Доза излучения.

Элементарные частицы. Фундаментальные взаимодействия.

Классы элементарных частиц.

Астрофизика (12ч)

Строение и состав Солнечной системы. Звезды и источники их энергии. Внутреннее строение Солнца. Современные представления о происхождении и эволюции Солнца и звезд. Классификация звезд. Галактика. Типы галактик. Вселенная. Космология. Применимость законов физики для объяснения природы небесных объектов. Пространственные масштабы наблюдаемой Вселенной и применимость физических законов.

Фронтальные лабораторные работы

- 1. Измерение ЭДС и внутреннего сопротивления источникатока.
- 2. Определение элементарного заряда.
- 3. Изучение терморезистора.
- 4. Изучение явления электромагнитной индукции.
- 5. Измерение относительного показателя преломления вещества.
- 6. Изучение фотоэффекта.
- 7. Наблюдение линейчатых спектров.

Контрольные работы:

- 1. Постоянный электрический ток.
- 2. Электромагнитное поле.
- з. Колебания и волны.
- **4.** Оптика.

5. Элементы квантовой физики.

Итоговое повторение (8 ч)

3. Тематическое планирование

№	Тема урока	Кол-во	Кол-во	Кол-во
Π/Π		часов	л/р	к/р
1.	Электродинамика	54	5	4
2.	Элементы квантовой физики	25	2	1
3.	Астрофизика	12	0	0
4.	Повторение	8	0	0
	Итого	99	7	5